gcc 编译器参数

一、GCC编译过程

参考:http://hi.baidu.com/zengzhaonong/item/c00e079f500adccab625314f

-------------------------------------

Pre-Processing cpp 预处理

Compiling ccl 编译

Assembling as 汇编

Linking ld 链接



命令gcc首先调用cpp进行预处理,在预处理过程中,对源代码文件中的文件包含(#include)、预编译语句(如宏定义#define等)进行分析。

当所有的目标文件都生成之后,gcc就调用ld来完成最后的关键性工作,这个阶段就是链接。在链接阶段,所有的目标文件被安排在可执行程序中的恰当的位置,同时,该程序所调用到的库函数也从各自所在的库中链接到合适的地方。



ld -- The GNU linker

-l LIBNAME, --library LIBNAME Search for library LIBNAME(默认情况下会去链接动态共享库,如果有-static参数时将会去静态共享库进行静态链接)

-static Do not link against shared libraries(静态链接共享库).



.c 为后缀的文件,C语言源代码文件;

.a 为后缀的文件,是由目标文件构成的库文件;

.C、 .cc或.cxx为后缀的文件,是C++源代码文件;

.h 为后缀的文件,是程序所包含的头文件;

.i 为后缀的文件,是已经预处理过的C源代码文件;

.ii为后缀的文件,是已经预处理过的C++源代码文件;

.m 为后缀的文件,是Objective-C源代码文件;

.o 为后缀的文件,是编译后的目标文件;

.s 为后缀的文件,是汇编语言源代码文件;

.S 为后缀的文件,是经过预编译的汇编语言源代码文件。

二、常用命令

参考:http://www.cnblogs.com/sunyubo/archive/2011/09/06/2282054.html

1. gcc -E source_file.c

-E,只执行到预编译。直接输出预编译结果。



2. gcc -S source_file.c

-S,只执行到源代码到汇编代码的转换,输出汇编代码。



3. gcc -c source_file.c

-c,只执行到编译,输出目标文件。



4. gcc (-E/S/c/) source_file.c -o output_filename

-o, 指定输出文件名,可以配合以上三种标签使用。

-o 参数可以被省略。这种情况下编译器将使用以下默认名称输出:

-E:预编译结果将被输出到标准输出端口(通常是显示器)

-S:生成名为source_file.s的汇编代码

-c:生成名为source_file.o的目标文件。

无标签情况:生成名为a.out的可执行文件。



5. gcc -g source_file.c

-g,生成供调试用的可执行文件,可以在gdb中运行。由于文件中包含了调试信息因此运行效率很低,且文件也大不少。

这里可以用strip命令重新将文件中debug信息删除。这是会发现生成的文件甚至比正常编译的输出更小了,这是因为strip把原先正常编译中的一些额外信息(如函数名之类)也删除了。用法为 strip a.out



6. gcc -s source_file.c

-s, 直接生成与运用strip同样效果的可执行文件(删除了所有符号信息)。



7. gcc -O source_file.c

-O(大写的字母O),编译器对代码进行自动优化编译,输出效率更高的可执行文件。

-O 后面还可以跟上数字指定优化级别,如:

gcc -O2 source_file.c

数字越大,越加优化。但是通常情况下,自动的东西都不是太聪明,太大的优化级别可能会使生成的文件产生一系列的bug。一般可选择2;3会有一定风险。



8. gcc -Wall source_file.c

-W,在编译中开启一些额外的警告(warning)信息。-Wall,将所有的警告信息全开。



9. gcc source_file.c -L/path/to/lib -lxxx -I/path/to/include

-l, 指定所使用到的函数库,本例中链接器会尝试链接名为libxxx.a的函数库。

-L,指定函数库所在的文件夹,本例中链接器会尝试搜索/path/to/lib文件夹。

-I, 指定头文件所在的文件夹,本例中预编译器会尝试搜索/path/to/include文件夹。



有兴趣的朋友可以查看gcc的 manpage,找到更详细的说明。

三、选项

参考:http://www.cppblog.com/mydriverc/articles/33144.html

-o 设定输出文件名

-c 只编译,不连接.

-E 只做预编译.

-pipe 在多个编译过程之间使用管道.

--version 显示版本.

-static 静态连接.

-ansi C 模式下支持所有 ISO C90 标准的 C 程序, C++ 模式下去除对 GNU C++ 扩展的支持(GNU扩展会与 ISO C++ 冲突)

-std= 确定编译语言的标准,目前只在编译 C 和 C++ 时有效 -fno-asm 不将 "asm" "inline" "typeof" 作为关键字,可以用他们做变量名等. -funsigned-char 将"char"的数据类型设为"unsigned",即无符号.

-fsigned-char 正好相反,将"char"设为"signed".

-fsyntax-only 只检查语法错误,不做其他任何事.

-pedantic 显示所有的 ISO C 和 ISO C++ 的警告,并且拒绝所有使用禁止扩展的程序

-Wall 显示所有警告

-g 将编译时的调试信息保存到本地文件中( stabs,COFF,XCOFF,DWARF)

-ggdb 为 GDB 产生调试信息,包含 GDB 的扩展.

-ggdb(level) 设定产生何种等级的调试信息, level 为 1-3, 1 最少,3 最多.

-ftime-reprot 统计编译消耗的时间并显示报告.

-fmem-report 显示所有的静态内存分配.

-ftest-coverages 为 gcov工具产生数据文件.

gcc 编译选项,翻译出来用起来方便.

VC编译选项(转载)- -

Tag: 编程

/*****************/

VC编译选项 csdnb3a [原作]

关键字 VC编译选项 出处

-优化-

/O1 最小化空间 minimize space

/Op[-] 改善浮点数一致性 improve floating-pt consistency

/O2 最大化速度 maximize speed

/Os 优选代码空间 favor code space

/Oa 假设没有别名 assume no aliasing

/Ot 优选代码速度 favor code speed

/Ob 内联展开(默认 n=0) inline expansion (default n=0)

/Ow 假设交叉函数别名 assume cross-function aliasing

/Od 禁用优化(默认值) disable optimizations (default)

/Ox 最大化选项。(/Ogityb2 /Gs) maximum opts. (/Ogityb1 /Gs)

/Og 启用全局优化 enable global optimization

/Oy[-] 启用框架指针省略 enable frame pointer omission

/Oi 启用内建函数 enable intrinsic functions

-代码生成-

/G3 为 80386 进行优化 optimize for 80386

/G4 为 80486 进行优化 optimize for 80486

/GR[-] 启用 C++ RTTI enable C++ RTTI

/G5 为 Pentium 进行优化 optimize for Pentium

/G6 为 Pentium Pro 进行优化 optimize for Pentium Pro

/GX[-] 启用 C++ 异常处理(与 /EHsc 相同) enable C++ EH (same as /EHsc)

/EHs 启用同步 C++ 异常处理 enable synchronous C++ EH

/GD 为 Windows DLL 进行优化 optimize for Windows DLL

/GB 为混合模型进行优化(默认) optimize for blended model (default)

/EHa 启用异步 C++ 异常处理 enable asynchronous C++ EH

/Gd __cdecl 调用约定 __cdecl calling convention

/EHc extern“C”默认为 nothrow extern "C" defaults to nothrow

/Gr __fastcall 调用约定 __fastcall calling convention

/Gi[-] 启用增量编译 enable incremental compilation

/Gz __stdcall 调用约定 __stdcall calling convention

/Gm[-] 启用最小重新生成 enable minimal rebuild

/GA 为 Windows 应用程序进行优化 optimize for Windows Application

/Gf 启用字符串池 enable string pooling

/QIfdiv[-] 启用 Pentium FDIV 修复 enable Pentium FDIV fix

/GF 启用只读字符串池 enable read-only string pooling

/QI0f[-] 启用 Pentium 0x0f 修复 enable Pentium 0x0f fix

/Gy 分隔链接器函数 separate functions for linker

/GZ 启用运行时调试检查 enable runtime debug checks

/Gh 启用钩子函数调用 enable hook function call

/Ge 对所有函数强制堆栈检查 force stack checking for all funcs

/Gs[num] 禁用堆栈检查调用 disable stack checking calls

-输出文件-

/Fa[file] 命名程序集列表文件 name assembly listing file

/Fo 命名对象文件 name object file

/FA[sc] 配置程序集列表 configure assembly listing

/Fp 命名预编译头文件 name precompiled header file

/Fd[file] 命名 .PDB 文件 name .PDB file

/Fr[file] 命名源浏览器文件 name source browser file

/Fe 命名可执行文件 name executable file

/FR[file] 命名扩展 .SBR 文件 name extended .SBR file

/Fm[file] 命名映射文件 name map file

-预处理器-

/FI 命名强制包含文件 name forced include file

/C 不吸取注释 don't strip comments

/U 移除预定义宏 remove predefined macro

/D{=|#} 定义宏 define macro

/u 移除所有预定义宏 remove all predefined macros

/E 将预处理定向到标准输出 preprocess to stdout

/I 添加到包含文件的搜索路径 add to include search path

/EP 将预处理定向到标准输出,不要带行号 preprocess to stdout, no #line

/X 忽略“标准位置” ignore "standard places"

/P 预处理到文件 preprocess to file

-语言-

/Zi 启用调试信息 enable debugging information

/Zl 忽略 .OBJ 中的默认库名 omit default library name in .OBJ

/ZI 启用调试信息的“编辑并继续”功能 enable Edit and Continue debug info

/Zg 生成函数原型 generate function prototypes

/Z7 启用旧式调试信息 enable old-style debug info

/Zs 只进行语法检查 syntax check only

/Zd 仅要行号调试信息 line number debugging info only

/vd{0|1} 禁用/启用 vtordisp disable/enable vtordisp

/Zp[n] 在 n 字节边界上包装结构 pack structs on n-byte boundary

/vm 指向成员的指针类型 type of pointers to members

/Za 禁用扩展(暗指 /Op) disable extensions (implies /Op)

/noBool 禁用“bool”关键字 disable "bool" keyword

/Ze 启用扩展(默认) enable extensions (default)

  • 杂项 -

    /?, /help 打印此帮助消息 print this help message

    /c 只编译,不链接 compile only, no link

    /W 设置警告等级(默认 n=1) set warning level (default n=1)

    /H 最大化外部名称长度 max external name length

    /J 默认 char 类型是 unsigned default char type is unsigned

    /nologo 取消显示版权消息 suppress copyright message

    /WX 将警告视为错误 treat warnings as errors

    /Tc 将文件编译为 .c compile file as .c

    /Yc[file] 创建 .PCH 文件 create .PCH file

    /Tp 将文件编译为 .cpp compile file as .cpp

    /Yd 将调试信息放在每个 .OBJ 中 put debug info in every .OBJ

    /TC 将所有文件编译为 .c compile all files as .c

    /TP 将所有文件编译为 .cpp compile all files as .cpp

    /Yu[file] 使用 .PCH 文件 use .PCH file

    /V 设置版本字符串 set version string

    /YX[file] 自动的 .PCH 文件 automatic .PCH

    /w 禁用所有警告 disable all warnings

    /Zm 最大内存分配(默认为 %) max memory alloc (% of default)

-链接-

/MD 与 MSVCRT.LIB 链接 link with MSVCRT.LIB

/MDd 与 MSVCRTD.LIB 调试库链接 link with MSVCRTD.LIB debug lib

/ML 与 LIBC.LIB 链接 link with LIBC.LIB

/MLd 与 LIBCD.LIB 调试库链接 link with LIBCD.LIB debug lib

/MT 与 LIBCMT.LIB 链接 link with LIBCMT.LIB

/MTd 与 LIBCMTD.LIB 调试库链接 link with LIBCMTD.LIB debug lib

/LD 创建 .DLL Create .DLL

/F 设置堆栈大小 set stack size

/LDd 创建 .DLL 调试库 Create .DLL debug libary

/link [链接器选项和库] [linker options and libraries]

四、编译知识

参考:http://www.cnblogs.com/yc_sunniwell/archive/2010/07/22/1782678.html

  1. gcc/g++在执行编译工作的时候,总共需要4步

(1).预处理,生成.i的文件[预处理器cpp]

(2).将预处理后的文件不转换成汇编语言,生成文件.s[编译器egcs]

(3).有汇编变为目标代码(机器代码)生成.o的文件[汇编器as]

(4).连接目标代码,生成可执行程序[链接器ld]

[参数详解]

-x language filename

设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定C语言的后缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性,决定你的C代码文件的后缀名是.pig 哈哈,那你就要用这参数,这个参数对他后面的文件名都起作用,除非到了下一个参数的使用。可以使用的参数吗有下面的这些 :

c',objective-c', c-header',c++', cpp-output',<span class="Apple-converted-space"></span><br></br>assembler', and `assembler-with-cpp'.

看到英文,应该可以理解的。例子用法: gcc -x c hello.pig

-x none filename

关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型. 例子用法: gcc -x c hello.pig -x none hello2.c

-c

只激活预处理,编译,和汇编,也就是他只把程序做成obj文件.例子用法: gcc -c hello.c (他将生成.o的obj文件)

-S

只激活预处理和编译,就是指把文件编译成为汇编代码。例子用法: gcc -S hello.c (他将生成.s的汇编代码,你可以用文本编辑器察看 )

-E

只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面.例子用法: gcc -E hello.c > pianoapan.txt

gcc -E hello.c | more (慢慢看吧,一个hello word 也要与处理成800行的代码 )

-o

制定目标名称,缺省的时候,gcc 编译出来的文件是a.out,很难听,如果你和我有同感,改掉它,哈哈 .例子用法 :

gcc -o hello.exe hello.c (哦,windows用习惯了)

gcc -o hello.asm -S hello.c

-pipe

使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题. 例子用法 :gcc -pipe -o hello.exe hello.c

-ansi

关闭gnu c中与ansi c不兼容的特性,激活ansi c的专有特性(包括禁止一些asm inline typeof关键字,以及UNIX,vax等预处理宏.)

-fno-asm

此选项实现ansi选项的功能的一部分,它禁止将asm,inline和typeof用作关键字。

-fno-strict-prototype

只对g++起作用,使用这个选项,g++将对不带参数的函数,都认为是没有显式的对参数的个数和类型说明,而不是没有参数.

而gcc无论是否使用这个参数,都将对没有带参数的函数,认为城没有显式说明的类型

-fthis-is-varialble

就是向传统c++看齐,可以使用this当一般变量使用.

-fcond-mismatch

允许条件表达式的第二和第三参数类型不匹配,表达式的值将为void类型

-funsigned-char

-fno-signed-char

-fsigned-char

-fno-unsigned-char

这四个参数是对char类型进行设置,决定将char类型设置成unsigned char(前两个参数)或者 signed char(后两个参数)

-include file

包含某个代码,简单来说,就是便以某个文件,需要另一个文件的时候,就可以用它设定,功能就相当于在代码中使用#include

例子用法: gcc hello.c -include /root/pianopan.h

-imacros file

将file文件的宏,扩展到gcc/g++的输入文件,宏定义本身并不出现在输入文件中-Dmacro .相当于C语言中的#define macro

-Dmacro=defn

相当于C语言中的#define macro=defn

-Umacro

相当于C语言中的#undef macro

-undef

取消对任何非标准宏的定义

-Idir

在你是用#include"file"的时候,gcc/g++会先在当前目录查找你所制定的头文件,如果没有找到,他回到缺省的头文件目录找,如果使用-I制定了目录,他回先在你所制定的目录查找,然后再按常规的顺序去找. 对于#include,gcc/g++会到-I制定的目录查找,查找不到,然后将到系统的缺省的头文件目录查找 .

-I-

就是取消前一个参数的功能,所以一般在-Idir之后使用

-idirafter dir

在-I的目录里面查找失败,讲到这个目录里面查找.

-iprefix prefix

-iwithprefix dir

一般一起使用,当-I的目录查找失败,会到prefix+dir下查找

-nostdinc

使编译器不再系统缺省的头文件目录里面找头文件,一般和-I联合使用,明确限定头文件的位置

-nostdin C++

规定不在g++指定的标准路经中搜索,但仍在其他路径中搜索,.此选项在创建libg++库使用

-C

在预处理的时候,不删除注释信息,一般和-E使用,有时候分析程序,用这个很方便的.

-M

生成文件关联的信息。包含目标文件所依赖的所有源代码.你可以用gcc -M hello.c来测试一下,很简单。

-MM

和上面的那个一样,但是它将忽略由#include造成的依赖关系。

-MD

和-M相同,但是输出将导入到.d的文件里面

-MMD

和-MM相同,但是输出将导入到.d的文件里面

-Wa,option

此选项传递option给汇编程序;如果option中间有逗号,就将option分成多个选项,然后传递给会汇编程序

-Wl.option

此选项传递option给连接程序;如果option中间有逗号,就将option分成多个选项,然后传递给会连接程序.

-llibrary

制定编译的时候使用的库.例子用法 : gcc -lcurses hello.c (使用ncurses库编译程序 )

-Ldir

制定编译的时候,搜索库的路径。比如你自己的库,可以用它制定目录,不然编译器将只在标准库的目录找。这个dir就是目录的名称。

-O0

-O1

-O2

-O3

编译器的优化选项的4个级别,-O0表示没有优化,-O1为缺省值,-O3优化级别最高

-g

只是编译器,在编译的时候,产生条是信息。

-gstabs

此选项以stabs格式声称调试信息,但是不包括gdb调试信息.

-gstabs+

此选项以stabs格式声称调试信息,并且包含仅供gdb使用的额外调试信息.

-ggdb

此选项将尽可能的生成gdb的可以使用的调试信息.

-static

此选项将禁止使用动态库,所以,编译出来的东西,一般都很大,也不需要什么动态连接库,就可以运行.

-share

此选项将尽量使用动态库,所以生成文件比较小,但是需要系统由动态库.

-traditional

试图让编译器支持传统的C语言特性

2. 源文件为main.c, x.c, y.c, z.c,头文件为x.h,y.h,z.h, 如何编译成.so动态库?

声称动代连接库,假设名称为libtest.so

gcc x.c y.c z.c -fPIC -shared -o libtest.so

将main.c和动态连接库进行连接生成可执行文件

gcc main.c -L. -ltest -o main

输出LD_LIBRARY_PATH环境变量,一边动态库装载器能够找到需要的动态库

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.

测试是否动态连接,如果列出libtest.so,那么应该是连接正常了

ldd main

说明:

(1) -fPIC:表示编译为位置独立的代码,不用此选项的话编译后的代码是位置相关的所以动态载入时是通过代码拷贝的方式来满足不同进程的需要,而不能达到真正代码段共享的目的。

(2) -L.:表示要连接的库在当前目录中

(3) -ltest:编译器查找动态连接库时有隐含的命名规则,即在给出的名字前面加上lib,后面加上.so来确定库的名称

(4) LD_LIBRARY_PATH:这个环境变量指示动态连接器可以装载动态库的路径。

当然如果有root权限的话,可以修改/etc/ld.so.conf文件,然后调用/sbin/ldconfig来达到同样的目的,不过如果没有root权限,那么只能采用输出LD_LIBRARY_PATH的方法了。

3. Linux下如何用GCC编译动态库

本文主要解决以下几个问题

1) 为什么要使用库?

2) 库的分类

3) 创建自己的库

或许大家对自己初学 Linux时的情形仍记忆尤新吧。如果没有一个能较好的解决依赖关系的包管理器,在Linux下安装软件将是一件及其痛苦的工作。你装a包时,可能会提示你要先装b包,当你费尽心力找到b包时,可能又会提示你要先安装c包。我就曾被这样的事搞的焦头烂额,至今一提起rpm仍心有余悸,头皮发麻。说是一朝被蛇咬,十年怕井绳怕也不为过。

Linux下之所以有这许多的依赖关系,其中一个开发原则真是功不可没。这个原则就是:尽量不重复做别人已经做过的事。换句话说就是尽量充分利用别人的劳动成果。

这就涉及到如何有效的进行代码复用。

(1) 为什么要使用库?

关于代码复用的途径,一般有两种。这是最没有技术含量的一种方案。如果代码小,则工作量还可以忍受,如果代码很庞大,则此法不可取。即便有人原意这样做,但谁又能保证所有的代码都可得到呢?而库的出现很好的解决了这个问题。库,是一种封装机制,简单说把所有的源代码编译成目标代码后打成的包。那么用户怎么能知道这个库提供什么样的接口呢?难道要用nm等工具逐个扫描?不用担心,库的开发者早以把一切都做好了。除了包含目标代码的库外,www.Linuxidc.com一般还会提供一系列的头文件,头文件中就包含了库的接口。为了让方便用户,再加上一个使用说明就差不多完美了。

(2) 库的分类

(2.1) 库的分类

根据链接时期的不同,库又有静态库和动态库之分。静态库是在链接阶段被链接的(好像是废话,但事实就是这样),所以生成的可执行文件就不受库的影响了,即使库被删除了,程序依然可以成功运行。有别于静态库,动态库的链接是在程序执行的时候被链接的。所以,即使程序编译完,库仍须保留在系统上,以供程序运行时调用。(TODO:链接动态库时链接阶段到底做了什么)

(2.2) 静态库和动态库的比较

链接静态库其实从某种意义上来说也是一种粘贴复制,只不过它操作的对象是目标代码而不是源码而已。因为静态库被链接后库就直接嵌入可执行文件中了,这样就带来了两个问题。首先就是系统空间被浪费了。这是显而易见的,想象一下,如果多个程序链接了同一个库,则每一个生成的可执行文件就都会有一个库的副本,必然会浪费系统空间。再者,人非圣贤,即使是精心调试的库,也难免会有错。一旦发现了库中有bug,挽救起来就比较麻烦了。必须一一把链接该库的程序找出来,然后重新编译。而动态库的出现正弥补了静态库的以上弊端。因为动态库是在程序运行时被链接的,所以磁盘上只须保留一份副本,因此节约了磁盘空间。如果发现了bug或要升级也很简单,只要用新的库把原来的替换掉就行了。那么,是不是静态库就一无是处了呢?答曰:非也非也。不是有句话么:存在即是合理。静态库既然没有湮没在滔滔的历史长河中,就必然有它的用武之地。想象一下这样的情况:如果你用libpcap库编了一个程序,要给被人运行,而他的系统上没有装pcap库,该怎么解决呢?最简单的办法就是编译该程序时把所有要链接的库都链接它们的静态库,这样,就可以在别人的系统上直接运行该程序了。

所谓有得必有失,正因为动态库在程序运行时被链接,故程序的运行速度和链接静态库的版本相比必然会打折扣。然而瑕不掩瑜,动态库的不足相对于它带来的好处在现今硬件下简直是微不足道的,所以链接程序在链接时一般是优先链接动态库的,除非用-static参数指定链接静态库。

(2.3) 如何判断一个程序有没有链接动态库? 答案是用file实用程序。

file程序是用来判断文件类型的,在file命令下,所有文件都会原形毕露的。顺便说一个技巧。有时在 windows下用浏览器下载tar.gz或tar.bz2文件,后缀名会变成奇怪的tar.tar,到Linux有些新手就不知怎么解压了。但 Linux下的文件类型并不受文件后缀名的影响,所以我们可以先用命令file xxx.tar.tar看一下文件类型,然后用tar加适当的参数解压。

另外,还可以借助程序ldd实用程序来判断。ldd是用来打印目标程序(由命令行参数指定)所链接的所有动态库的信息的,如果目标程序没有链接动态库,则打印“not a dynamic executable”,ldd的用法请参考manpage。

(3) 创建自己的库

(3.1) 创建动态库

创建文件hello.c,内容如下:

include

void hello(void)

{

printf("Hello World\n");

}

用命令gcc -shared hello.c -o libhello.so编译为动态库。可以看到,当前目录下多了一个文件libhello.so。

[leo@leo test]$ file libhello.so

libhello.so: ELF 32-bit LSB shared object, Intel 80386, version 1 (SYSV), not stripped

看到了吧,文件类型是shared object了。再编辑一个测试文件test.c,内容如下:

int main()

{

hello();

return 0;

}

这下可以编译了:)

[leo@leo test]$ gcc test.c

/tmp/ccm7w6Mn.o: In function `main':

test.c:(.text+0x1d): undefined reference to `hello'

collect2: ld returned 1 exit status

链接时gcc找不到hello函数,编译失败:(。原因是hello在我们自己创建的库中,如果gcc能找到那才教见鬼呢!ok,再接再厉。

[leo@leo test]$ gcc test.c -lhello

/usr/lib/gcc/i686-pc-Linux-gnu/4.0.0/http://www.cnblogs.com/http://www.cnblogs.com/i686-pc-Linux-gnu/bin/ld: cannot find -lhello

collect2: ld returned 1 exit status

[leo@leo test]$ gcc test.c -lhello -L.

[leo@leo test]$

第一次编译直接编译,gcc默认会链接标准c库,但符号名hello解析不出来,故连接阶段通不过了。现在用gcc test.c -lhello -L.已经编译成功了,默认输出为a.out。现在来试着运行一下:

[leo@leo test]$ ./a.out

./a.out: error while loading shared libraries: libhello.so: cannot open shared object file: No such file or directory

咦,怎么回事?原来虽然链接时链接器(dynamic linker)找到了动态库libhello.so,但动态加载器(dynamic loader, 一般是/lib/ld-Linux.so.2)却没找到。再来看看ldd的输出:

[leo@leo test]$ ldd a.out

Linux-gate.so.1 => (0xffffe000)

libhello.so => not found

libc.so.6 => /lib/libc.so.6 (0x40034000)

/lib/ld-Linux.so.2 (0x40000000)

果然如此,看到没有,libhello.so => not found。Linux为我们提供了两种解决方法:

1).可以把当前路径加入 /etc/ld.so.conf中然后运行ldconfig,或者以当前路径为参数运行ldconfig(要有root权限才行)。

2).把当前路径加入环境变量LD_LIBRARY_PATH中

当然,如果你觉得不会引起混乱的话,可以直接把该库拷入/lib,/usr/lib/等位置(无可避免,这样做也要有权限),这样链接器和加载器就都可以准确的找到该库了。我们采用第二种方法:

[leo@leo test]$ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

[leo@leo test]$ ldd a.out

Linux-gate.so.1 => (0xffffe000)

libhello.so => ./libhello.so (0x4001f000)

libc.so.6 => /lib/libc.so.6 (0x40036000)

/lib/ld-Linux.so.2 (0x40000000)

哈哈,这下ld-Linux.so.2就可以找到libhello.so这个库了。现在可以直接运行了:

[leo@leo test]$ ./a.out

Hello World

(3.2) 创建静态库

仍使用刚才的hello.c和test.c。第一步,生成目标文件。

[leo@leo test]$ gcc -c hello.c

[leo@leo test]$ ls hello.o -l

-rw-r--r-- 1 leo users 840 5月 6 12:48 hello.o

第二步,把目标文件归档。

[leo@leo test]$ ar r libhello.a hello.o

ar: creating libhello.a

OK,libhello.a就是我们所创建的静态库了,简单吧:)

[leo@leo test]$ file libhello.a

libhello.a: current ar archive

下面一行命令就是教你如何在程序中链接静态库的:

[leo@leo test]$ gcc test.c -lhello -L. -static -o hello.static

我们来用file命令比较一下用动态库和静态库链接的程序的区别:

[leo@leo test]$ gcc test.c -lhello -L. -o hello.dynamic

正如前面所说,链接器默认会链接动态库(这里是libhello.so),所以只要把上个命令中的 -static参数去掉就可以了。用file实用程序验证一下是否按我们的要求生成了可执行文件:

[leo@leo test]$ file hello.static hello.dynamic

hello.static: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.6.6, statically linked, not stripped

hello.dynamic: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.6.6, dynamically linked (uses shared libs), not stripped

不妨顺便练习一下ldd的用法:

[leo@leo test]$ ldd hello.static hello.dynamic

hello.static:

not a dynamic executable

hello.dynamic:

Linux-gate.so.1 => (0xffffe000)

libhello.so => ./libhello.so (0x4001f000)

libc.so.6 => /lib/libc.so.6 (0x40034000)

/lib/ld-Linux.so.2 (0x40000000)

OK,看来没有问题,那就比较一下大小先:

[leo@leo test]$ ls -l hello.[ds]*

-rwxr-xr-x 1 leo users 5911 5月 6 12:54 hello.dynamic

-rwxr-xr-x 1 leo users 628182 5月 6 12:54 hello.static

看到区别了吧,链接静态库的目标程序和链接动态库的程序比起来简直就是一个庞然大物!这么小的程序,很难看出执行时间的差别,不过为了完整起见,还是看一下time的输出吧:

[leo@leo test]$ time ./hello.static

Hello World

real 0m0.001s

user 0m0.000s

sys 0m0.001s

[leo@leo test]$ time ./hello.dynamic

Hello World

real 0m0.001s

user 0m0.000s

sys 0m0.001s

如果程序比较大的话,应该效果会很明显的。 原文链接: https://www.cnblogs.com/yunsicai/p/3191002.html

欢迎关注

微信关注下方公众号,第一时间获取干货硬货;公众号内回复【pdf】免费获取数百本计算机经典书籍

原创文章受到原创版权保护。转载请注明出处:https://www.ccppcoding.com/archives/95942

非原创文章文中已经注明原地址,如有侵权,联系删除

关注公众号【高性能架构探索】,第一时间获取最新文章

转载文章受原作者版权保护。转载请注明原作者出处!

(0)
上一篇 2023年2月10日 上午3:21
下一篇 2023年2月10日 上午3:22

相关推荐