二叉树前序、中序、后序遍历相互求法

http://www.cr173.com/html/18891_1.html

http://www.nowcoder.com/practice/8a19cbe657394eeaac2f6ea9b0f6fcf6?tpId=13&tqId=11157&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

 

今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。

首先,我们看看前序、中序、后序遍历的特性: 
前序遍历: 
    1.访问根节点 
    2.前序遍历左子树 
    3.前序遍历右子树 
中序遍历: 
    1.中序遍历左子树 
    2.访问根节点 
    3.中序遍历右子树 
后序遍历: 
    1.后序遍历左子树 
    2.后序遍历右子树 
    3.访问根节点

一、已知前序、中序遍历,求后序遍历

例:

前序遍历:         GDAFEMHZ

中序遍历:         ADEFGHMZ

画树求法:
第一步,根据前序遍历的特点,我们知道根结点为G

第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

 第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

那么,我们可以画出这个二叉树的形状:

二叉树前序、中序、后序遍历相互求法

那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

编程求法:(依据上面的思路,写递归程序)

#include <iostream>
#include <fstream>
#include <string>

struct TreeNode
{
    struct TreeNode* left;
    struct TreeNode* right;
    char  elem;
};

void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
{
    if (length == 0)
    {
        //cout<<"invalid length";
        return;
    }
    TreeNode* node = new TreeNode;//Noice that [new] should be written out.
    node->elem = *preorder;
    int rootIndex = 0;
    for (; rootIndex < length; rootIndex++)
    {
        if (inorder[rootIndex] == *preorder)
            break;
    }
    //Left
    BinaryTreeFromOrderings(inorder, preorder + 1, rootIndex);
    //Right
    BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
    cout << node->elem << endl;
    return;
}


int main(int argc, char* argv[])
{
    printf("Hello World!n");
    char* pr = "GDAFEMHZ";
    char* in = "ADEFGHMZ";

    BinaryTreeFromOrderings(in, pr, 8);
    printf("n");
    return 0;
}

 

输出的结果为:AEFDHZMG

二、已知中序和后序遍历,求前序遍历

依然是上面的题,这次我们只给出中序和后序遍历:

中序遍历:       ADEFGHMZ

后序遍历:       AEFDHZMG

画树求法:
第一步,根据后序遍历的特点,我们知道后序遍历最后一个结点即为根结点,即根结点为G。

第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前后序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

这样,我们就可以画出二叉树的形状,如上图所示,这里就不再赘述。

那么,前序遍历:         GDAFEMHZ

编程求法:(并且验证我们的结果是否正确)

二叉树前序、中序、后序遍历相互求法

#include <iostream>
#include <fstream>
#include <string>

struct TreeNode
{
    struct TreeNode* left;
    struct TreeNode* right;
    char  elem;
};


TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length)
{
    if(length == 0)
    {
        return NULL;
    }
    TreeNode* node = new TreeNode;//Noice that [new] should be written out.
    node->elem = *(aftorder+length-1);
    std::cout<<node->elem<<std::endl;
    int rootIndex = 0;
    for(;rootIndex < length; rootIndex++)//a variation of the loop
    {
        if(inorder[rootIndex] ==  *(aftorder+length-1))
            break;
    }
    node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);
    node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));

    return node;
}

int main(int argc, char** argv)
{
    char* af="AEFDHZMG";    
    char* in="ADEFGHMZ"; 
    BinaryTreeFromOrderings(in, af, 8); 
    printf("n");
    return 0;
}

View Code

 

输出结果:GDAFEMHZ

 

题目描述

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    struct TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> in) {
        int in_size = in.size();

        if (in_size == 0)
            return NULL;
        vector<int> pre_left, pre_right, in_left, in_right;
        int val = pre[0];
        TreeNode* node = new TreeNode(val);//root node is the first element in pre
        int p = 0;
        for (; p < in_size; ++p){
            if (in[p] == val) //Find the root position in in 
                break;
        }
        for (int i = 0; i < in_size; ++i){
            if (i < p){
                in_left.push_back(in[i]);//Construct the left pre and in 
                pre_left.push_back(pre[i + 1]);
            }
            else if (i > p){
                in_right.push_back(in[i]);//Construct the right pre and in 
                pre_right.push_back(pre[i]);
            }
        }
        node->left = reConstructBinaryTree(pre_left, in_left);
        node->right = reConstructBinaryTree(pre_right, in_right);
        return node;
    }  
};

 

 

 

原文链接: https://www.cnblogs.com/yuguangyuan/p/5856534.html

欢迎关注

微信关注下方公众号,第一时间获取干货硬货;公众号内回复【pdf】免费获取数百本计算机经典书籍;

也有高质量的技术群,里面有嵌入式、搜广推等BAT大佬

    二叉树前序、中序、后序遍历相互求法

原创文章受到原创版权保护。转载请注明出处:https://www.ccppcoding.com/archives/398191

非原创文章文中已经注明原地址,如有侵权,联系删除

关注公众号【高性能架构探索】,第一时间获取最新文章

转载文章受原作者版权保护。转载请注明原作者出处!

(0)
上一篇 2023年4月11日 上午9:56
下一篇 2023年4月11日 上午9:56

相关推荐