C++对象池的实现和原理

什么是对象池

对象池是一种空间换时间的技术,对象被预先创建并初始化后放入对象池中,对象提供者就能利用已有的对象来处理请求,并在不需要时归还给池子而非直接销毁

减少对象频繁创建所占用的内存

空间和初始化时间

对象池原理

描述一个对象池有两个很重要的参数,一个是这个对象池的类型,另一个是这个对象池可以获得对象的数量

对象池的实现和内存池的实现原理很像:都是一开始申请大内存空间,然后把大内存分配成小内存空间,当需要使用的时候直接分配使用,不在向系统申请内存空间,也不直接释放内存空间。使用完之后都是放回池子里

不同的地方在内存池有一个映射数组,在使用时负责快速定位合适的内存池(一个内存池可以有很多内存块大小不同的池子)

但是每一个类型的对象只对应一个对象池,并自己管理自己的对象池。不同类型的对象池是相互独立的存在

C++对象池的实现和原理

对象池的优点

1、减少频繁创建和销毁对象带来的成本,实现对象的缓存和复用

2、提高了获取对象的响应速度,对实时性要求较高的程序有很大帮助

3、一定程度上减少了垃圾回收机制(GC)的压力

对象池的缺点

1、很难设定对象池的大小,如果太小则不起作用,过大又会占用内存资源过高

2、并发环境中, 多个线程可能(同时)需要获取池中对象, 进而需要在堆数据结构上进行同步或者因为锁竞争而产生阻塞, 这种开销要比创建销毁对象的开销高数百倍;

3、由于池中对象的数量有限, 势必成为一个可伸缩性瓶颈;

4、所谓的脏对象就是指的是当对象被放回对象池后,还保留着刚刚被客户端调用时生成的数据。

脏对象可能带来两个问题

  • 脏对象持有上次使用的引用,导致内存泄漏等问题。
  • 脏对象如果下一次使用时没有做清理,可能影响程序的处理数据。

什么条件下使用对象池

1、资源受限的, 不需要可伸缩性的环境(cpu内存等物理资源有限): cpu性能不够强劲, 内存比较紧张, 垃圾收集, 内存抖动会造成比较大的影响, 需要提高内存管理效

率,响应性比吞吐量更为重要;

2、数量受限的, 比如数据库连接;

3、创建对象的成本比较大,并且创建比较频繁。比如线程的创建代价比较大,于是就有了常用的线程池。

对象池实现过程

对象池的实现代码分三部分,一个是对象池的内部实现类(ObjectPool),另一个是管理对象池的类(ObjectPoolBase)

对象池内部的实现和内存池基本一样,都是先申请一大块内存空间,然后再把大内存分成许多小内存,每个小内存对应一个对象,这些小内存以链表的形式进行管理

C++对象池的实现和原理

内存池的管理主要是对用户提供接口,参数的传递通过可变参的模板类来实现,对new和delete操作进行封装是为了更方便的初始化对象,让使用时更加灵活;要

创建不同类型的对象池,只需要继承ObjectPoolBase这个类就可以,当发现该类型对应的对象池没有初始化的时候,就会创建该对象池并且进行初始化操作,之后

就可以正常分配对象

C++对象池的实现和原理

注意:

对象池和内存池可以一起使用,在一起使用的情况下,如果要在对象池中使用智能指针,应该特别注意new操作,因为智能指针使用的是全局的new,内存池使用的

是类里面的new,在申请内存时会有差别

对象池文件
C++对象池的实现和原理C++对象池的实现和原理

#ifndef _ObjectPoolBase_hpp_
#define _ObjectPoolBase_hpp_


#include<stdlib.h>
#include<assert.h>
#include<mutex>

#ifdef _DEBUG
#ifndef xPrintf
#include<stdio.h>
#define xPrintf(...) printf(__VA_ARGS__)
#endif
#else
#ifndef xPrintf
#define xPrintf(...)
#endif
#endif // _DEBUG
//模板给对象池提供参数接口
template<class Type, size_t nPoolSzie>
//对象池的实现
class CELLObjectPool
{
public:
    CELLObjectPool()
    {
        initPool();
    }

    ~CELLObjectPool()
    {
        if (_pBuf)
            delete[] _pBuf;
    }
private:
    //NodeHeader是每个对象的描述信息
    class NodeHeader
    {
    public:
        //下一块位置
        NodeHeader* pNext;
        //内存块编号
        int nID;
        //引用次数
        char nRef;
        //是否在内存池中
        bool bPool;
    private:
        //预留
        char c1;
        char c2;
    };
public:
    //释放对象内存
    void freeObjMemory(void* pMem)
    {
        //首地址往前偏移,对象和对象描述信息的内存一起释放
        NodeHeader* pBlock = (NodeHeader*)((char*)pMem - sizeof(NodeHeader));
        xPrintf("freeObjMemory: %llx, id=%dn", pBlock, pBlock->nID);
        assert(1 == pBlock->nRef);
        //内存在对象池的部分释放之后,指针回到第一个未分配的对象
        if (pBlock->bPool)
        {
            std::lock_guard<std::mutex> lg(_mutex);
            if (--pBlock->nRef != 0)
            {
                return;
            }
            pBlock->pNext = _pHeader;
            _pHeader = pBlock;
        }
        else {
            if (--pBlock->nRef != 0)
            {
                return;
            }
            //不在对象池的直接释放内存
            delete[] pBlock;
        }
    }
    //申请对象内存,优先向内存池申请内存,内存池不够在向系统申请内存
    void* allocObjMemory(size_t nSize)
    {
        std::lock_guard<std::mutex> lg(_mutex);
        NodeHeader* pReturn = nullptr;
        //如果对象池已经满了,数量达到上限,需要向系统申请内存
        if (nullptr == _pHeader)
        {
            //计算对象池大小=对象数量*(一个对象内存大小+对象描述信息内存大小)
            pReturn = (NodeHeader*)new char[sizeof(Type) + sizeof(NodeHeader)];
            pReturn->bPool = false;
            pReturn->nID = -1;
            pReturn->nRef = 1;
            pReturn->pNext = nullptr;
        }
        else {
            pReturn = _pHeader;
            _pHeader = _pHeader->pNext;
            assert(0 == pReturn->nRef);
            pReturn->nRef = 1;
        }
        xPrintf("allocObjMemory: %llx, id=%d, size=%dn", pReturn, pReturn->nID, nSize);
        return ((char*)pReturn + sizeof(NodeHeader));
    }
private:
    //初始化对象池
    void initPool()
    {
        //断言
        assert(nullptr == _pBuf);
        //对象池不为空(已经初始化过),不初始化直接返回
        if (_pBuf)
            return;
        //计算对象池大小=对象数量*(一个对象内存大小+对象描述信息内存大小)
        size_t realSzie = sizeof(Type) + sizeof(NodeHeader);
        size_t n = nPoolSzie * realSzie;
        //申请池的内存
        _pBuf = new char[n];
        //初始化内存池
        _pHeader = (NodeHeader*)_pBuf;
        _pHeader->bPool = true;
        _pHeader->nID = 0;
        _pHeader->nRef = 0;
        _pHeader->pNext = nullptr;
        //遍历内存块进行初始化
        NodeHeader* pTemp1 = _pHeader;

        for (size_t n = 1; n < nPoolSzie; n++)
        {
            NodeHeader* pTemp2 = (NodeHeader*)(_pBuf + (n* realSzie));
            pTemp2->bPool = true;
            pTemp2->nID = n;
            pTemp2->nRef = 0;
            pTemp2->pNext = nullptr;
            pTemp1->pNext = pTemp2;
            pTemp1 = pTemp2;
        }
    }
private:
    //描述信息块地址
    NodeHeader* _pHeader;
    //对象池内存缓存区地址
    char* _pBuf;
    //多线程使用需要加锁
    std::mutex _mutex;
};

//模板类给主函数使用对象池提供接口
template<class Type, size_t nPoolSzie>
//使用对象池的类
class ObjectPoolBase
{
public:
    //重载给对象申请内存的new操作
    void* operator new(size_t nSize)
    {
        return objectPool().allocObjMemory(nSize);
    }
    //重载给对象释放内存的delete操作
    void operator delete(void* p)
    {
        objectPool().freeObjMemory(p);
    }

    //创建对象,用模板类提供对外的可变参数的接口
    //这里的模板为啥要用可变参数?
    //这里创建一个对象的时候还可能带有初始化的参数,这个参数的个数是不一样的,所有模板的参数需要变参
    //
    template<typename ...Args>
    static Type* createObject(Args ... args)
    {   //不定参数  可变参数
        Type* obj = new Type(args...);
        //可以做点其它的事情,比如说对象的放逐和驱逐
        return obj;
    }
    //销毁对象
    static void destroyObject(Type* obj)
    {
        delete obj;
    }
private:
    //定义不同类型的对象池
    typedef CELLObjectPool<Type, nPoolSzie> ClassTypePool;
    //单例-饿汉模式,实例化一个对象池
    static ClassTypePool& objectPool()
    {   //静态CELLObjectPool对象
        static ClassTypePool sPool;
        return sPool;
    }
};
#endif // !_ObjectPoolBase_hpp_

#include "ObjectPoolBase.hpp"

测试文件

#include<stdlib.h>
#include<iostream>
#include<thread>
#include<mutex>//锁
#include<memory>

#include"ObjectPoolBase.hpp"

using namespace std;

//10是池内对象的最大数量,通过继承ObjectPoolBase来使用对象池
class ClassA : public ObjectPoolBase<ClassA, 10>
{
public:
    ClassA(int n)
    {
        num = n;
        printf("ClassAn");
    }

    ~ClassA()
    {
        printf("~ClassAn");
    }
public:
    int num = 0;
};

class ClassB : public ObjectPoolBase<ClassB, 10>
{
public:
    ClassB(int n, int m)
    {
        num = n * m;
        printf("ClassBn");
    }

    ~ClassB()
    {
        printf("~ClassBn");
    }
public:
    int num = 0;
};


int main()
{
    {
        //对象池的使用过程是在使用new的时候,因为你要创建的类继承了对象池管理的类,
        //对象池管理类会根据你设计的对象数量创建(初始化)对象池,
        //进入对象池的时候首先判断该对象池是否初始化,初始化过说明该对象池已经存在
        //未初始化说明还没有该类型的对象池

        //如果该对象池没有初始化,就进行初始化(创建一个对象池)
        //已经初始化就直接从该对象池中分配一个对象
        //然后通过new操作在对象池中分配一个已经创建好的对象

        //再根据对象传进来的参数,确定对象池允许有几个对象
        //然后申请相应大小的内存,逐个以链表的形式进行初始化

        //两种创建对象的方法
        //直接用new创建对象,把new和delete暴露在外,使用不灵活,初始化对象不方便
        ClassA* a1 = new ClassA(5);
        //delete a1;

        //把new和delete封装成一个函数,可以更灵活的对对象进行操作,比如在创建的时候初始化对象
        ClassA* a2 = ClassA::createObject(6);
        //ClassA::destroyObject(a2);

        delete a1;
        ClassA::destroyObject(a2);
        ClassB* b1 = new ClassB(5, 6);
        delete b1;

        ClassB* b2 = ClassB::createObject(5, 6);
        ClassB::destroyObject(b2);
    }
    system("pause");
    return 0;
}

原文链接: https://www.cnblogs.com/-citywall123/p/12726552.html

欢迎关注

微信关注下方公众号,第一时间获取干货硬货;公众号内回复【pdf】免费获取数百本计算机经典书籍

原创文章受到原创版权保护。转载请注明出处:https://www.ccppcoding.com/archives/196165

非原创文章文中已经注明原地址,如有侵权,联系删除

关注公众号【高性能架构探索】,第一时间获取最新文章

转载文章受原作者版权保护。转载请注明原作者出处!

(0)
上一篇 2023年2月12日 下午7:10
下一篇 2023年2月12日 下午7:10

相关推荐